Solar Induced Growth of Silver Nanocrystals

VINÍCIUS DAMASCENO COSTA

Solar induced growth of silver nanocrystals

Annett Thøgersen^{1,2}

¹Department of Solar Energy, Institute for Energy Technology, Instituttveien 18, 2007 Kjeller, Norway and ²SINTEF Materials and Chemistry, P.O.Box 124 Blindern, 0314 Oslo, Norway

Georg Muntingh

Centre of Mathematics for Applications, University of Oslo, P.O.Box 1053, Blindern, 0316 Oslo, Norway (Dated: June 25, 2018)

Introduction

>Metallic nanocrystals increase the absorption and the eficience of solar cells.

>Silver nanocrystals is cheap and easy to produce.

>Instability with the heat.

Objective

The paper study the the effect of solar irradiation on Ag nanocrystals on a carbon film, and investigate the growth rate and particle distribution with solar irradiation in different times.

Experiment: Nanocrystals

>0.6 mM AgNO₃ solution.

- > deionized H₂O + 1.2 mM aqueous NaBH₄ solution.
- >Adding drop by drop in the continuously stirred solution.
- ➢They used a a AgNO₃/NaBH₄ molar ratio of 2/25.
- Finally they put one drop of the final solution in a carbon film.

Experiment: Transmission Electron Microscopy (TEM)

→What is a TEM?

- >5 of the TEM samples are placed under a Xenon lamp.
- ≻Temperature: 55.7°C after 15 min to 64.3°C after 240 min.
- >Lamp was placed 35 cm from the TEM sample grids.
- Sample 2 after 15 min; sample 3 after 30 min; sample 4 after 60 min; sample 5 after 120 min; and sample 6 after 240 min.

High-Resolution Transmission Electron Microscopy was used to see the nanocrystals.

Theory: Ostwald Ripening

➢Ostwald ripening

>First they described the process by the LSW model.

>The correction:

 $\langle R \rangle^3 = \langle R_0 \rangle^3 + k_\phi t$

> But some particles become aspherical over time: $\langle d \rangle^3 = \langle d_0 \rangle^3 + 8k_\phi t$

 $A~=~\pi(d/2)^2$

 $k_{0.25} \approx 0.810, \ k_{0.5} \approx 2.548, \ k_{0.75} \approx 8.207, \ k_{0.9} \approx 24.487.$

Theory: The log-normal Distribution

> Provide a close fit with the experimental observations of the particle sizes.

$$p(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$$

>The mean of the partiples sizes: $m={
m e}^{\mu+\sigma^2/2}$

>The standart deviation:

$$sd = e^{\mu + \sigma^2/2} \sqrt{e^{\sigma^2} - 1}$$

Theory:Parameter Estimation

➤The probability that the random variable X assumes a value between d – 1/2 and d + 1/2

$$P_{d;\mu,\sigma} := \int_{d-1/2}^{d+1/2} p(x;\mu,\sigma) \mathrm{d}x$$

➤Sample i comprises Ni particles of which Ni,d are of size between d-1/2 and d+ 1/2.

$$\sum_{d} N_{i,d} \log(P_{d;\mu,\sigma})$$

> They estimate μ , σ by maximazing the expression numerically.

i	1	2	3	4	5	6
t_i	0	15	30	60	120	240
N_i	523	425	284	257	909	1499
$\widehat{\mu}_i$	1.775	2.014	2.050	1.903	2.102	2.382
$\widehat{\sigma}_i$	0.279	0.487	0.401	0.535	0.708	0.547
m_i	6.134	8.437	8.416	7.737	10.513	12.572
sd_i	1.743	4.362	3.515	4.453	8.480	7.425

Results

i	1	2	3	4	5	6
t_i	0	15	30	60	120	240
N_i	523	425	284	257	909	1499
$\widehat{\mu}_i$	1.775	2.014	2.050	1.903	2.102	2.382
$\widehat{\sigma}_i$	0.279	0.487	0.401	0.535	0.708	0.547
m_i	6.134	8.437	8.416	7.737	10.513	12.572
sd_i	1.743	4.362	3.515	4.453	8.480	7.425

Results

i	1	2	3	4	5	6
t_i	0	15	30	60	120	240
N_i	523	425	284	257	909	1499
$\widehat{\mu}_i$	1.775	2.014	2.050	1.903	2.102	2.382
$\widehat{\sigma}_i$	0.279	0.487	0.401	0.535	0.708	0.547
m_i	6.134	8.437	8.416	7.737	10.513	12.572
sd_i	1.743	4.362	3.515	4.453	8.480	7.425

$$\langle d \rangle^3 = \langle d_0 \rangle^3 + 8k_\phi t$$

$$\langle d_0 \rangle = 6.429 \qquad k_\phi = 0.881$$

Conclussion

After four hours of solar irradiation, the largest observed particle has a diameter of 638 nm. The average particle diameter <d> can be approximately described by the Ostwald ripening. The initial average diameter <d0> \approx 6.429 and kinetic coefficient k_{ϕ} \approx 0.881.

While the particle size distribution initially stays log-normal, it eventually starts to deviate from the log-normal distribution. The resulting distribution does not fit the steadystate distributions predicted by the Ostwald ripening model.

Bibliografia das imagens

[1]https://www.nsenergybusiness.com/news/perovskite-solar-cells/
[2]https://www.tradewheel.com/p/silver-nitrate-powder-agno3-high-purity-1081313/
[3]https://www.sigmaaldrich.com/BR/pt/product/aldrich/213462
[4]https://en.wikipedia.org/wiki/Transmission_electron_microscopy
[5]http://soft-matter.seas.harvard.edu/index.php/Ostwald_ripening
[6]https://en.wikipedia.org/wiki/Log-normal_distribution

