

NANO BUBBLE – SIZE DEPENDENCE OF SURFACE TENSION AND INSIDE PRESSURE

MITSUHIRO MATSUMOTO, KOTARO TANAKA

- 1. ARTICLE'S PROPOSAL
- 2. METHOD
- 3. RESULTS
- 4. CONCLUSION

• ARTICLE'S PROPOSAL

• Answer the question: how far is the Young-Laplace Equation applicable for nano bubbles?

$$P_{vap} = P_{liq} + \frac{2\gamma}{R}$$
 or $\Delta P = P_{vap} - P_{liq} = \frac{2\gamma}{R};$

"A bubble of R = 10 nm in water at room temperature ($\gamma \approx 0,073$) will show $\Delta P = 150$ atm. How can this tiny bubble be mechanically stable under atmospheric pressure?"

- 1. Abandon the Y-L equation, assuming that it works only in macroscopy or continuum level;
- 2. Y-L equation still applicable for nano bubbles, but the surface tension of them differs from the usual value, i.e., flat surface;

and $\frac{k_B T}{\varepsilon} = 1,0.$

• MD simulation of two systems of monoatomic simple liquid with 25,000 and 125,000 particles using the Lennard-Jones potential:

$$\emptyset_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \qquad \sigma = 0.34nm$$

• Canonical ensemble comparing a system with $\frac{k_B T}{\varepsilon} = 0,7$ (close to the triple point temperature)

- A repulsive external force field is applied at the central part of the cell to generate a space, or a "bubble";
- When the system reaches equilibrium the force field is removed;
- We can see particles inside the bubble, they evaporated spontaneously;

- There is three quantities to consider:
 - Density profile: average number of density at distance r from r_0 (bubble's "center of mass");
 - Pressures: Liquid pressure with Virial expression;
 - Vapor pressure empirical equation of state;
 - Surface tension: Y-L equation.

• RESULTS

<u>Density Profile</u> $n(r) = \frac{n_{liq} + n_{vap}}{2} + \frac{n_{liq} - n_{vap}}{2} tanh\left(\frac{r-R}{w}\right)$

 n_{liq} : liquid density

 n_{vap} : vapor density

R: bubble radius

w: width of interface

 $w(T = 0.7) \cong 0.8 - 1.0\sigma$; $w(T = 1.0) \cong 1.8 - 2.0\sigma$ [almost independente of R]

Liquid pressure

ക്ര

$$P = \frac{N}{V} k_B T - \frac{1}{6V} \left\langle \sum_{ij} r_{ij} \cdot \frac{\partial \phi_{LJ}(r_{ij})}{\partial r_{ij}} \right\rangle$$

- *P_{lig}*: applying virial to the "bulk" liquid region;
- $P \approx P_{liq}$ since the contribution of the bubble region is much smaller than the liquid region;
- Negative vaules of P_{liq} means that the surrounding liquid is in a stretched state (surface tension is the reason).

20

Bubble Radius [o]

- *P_{vap}*: can't apply virial due to low vapor density;
- MD simulation of vapor phase to make an empirical equation of state $[n_{vap}(P_{vap})]_T$
- *n_{vap}* is found by counting particles inside the bubble and *P_{vap}* by comparing with the empirical equation.

7

Surface tension

 $P_{vap} = P_{liq} + \frac{2\gamma}{R}$

• γ is independent of R;

8

- This result differs from other works:
 - 1st reason: difference of Method to evaluate γ ;
 - 2nd reason: difference of system size.

CONCLUSION

- The vapor density and the vapor pressure inside the bubble is independent of the bubble radius, equal to those of the saturated vapor in bulk equilibrium;
- The liquid surrounding the bubble is at a strongly stretched state. As the bubble size decreases, the liquid is exposed to more tensile stress;
- The surface tension evaluated with assumption of the Y–L equation is also little dependent on the bubble radius, and agrees with the surface tension of a planer interface;
- If Y-L equation is valid, stable nano bubbles can exist only in liquid under highly tensile stress, or large negative pressure – under atmospheric pressure they exist only at some non-equilibrium state or because of some impurity.