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Motivation

The main motivation is the phase separation in living cells.




Ostwald Ripening
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Elastic Ripening

There is a aditional term in the Young Laplace equation.

Dstwald ripening
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» Bubbles monodisperse
» Growth = more the network squeezes
> P.~E

» Pressure is heterogeneous.

E=10kPa
Gelest silicone




Objective

Elastic ripening phenomena can differ from the Ostwald ripening. In particular if
certain coditions we can observe the growth of small droplets fed by the

dissolution of large ones.

Diffusion
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Gelest
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Sylgard
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he Bubble Formation in the Gels

» Gels are satureted in Fluorinated oil (Fluorinert FC-770).
» Cooled passively to 22-23 -C.

» Grow by pushing open holes in the gel.

> First cure the stiffer silicone than the softer one.




Firts Results

After fast droplet formation, we observe slow evolution of the droplets near the interface.

Elastic nipening
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The mechanims in this process is diferente of the Ostwald ripening.




Comparison of the 2 Gels
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FI1G. 2: Droplets in Sylgard and Gelest silicones have differ-
ent sizes. The size distributions of droplets formed by phase
separation in different stiffness silicones. For a given stiffness,
droplets in Gelest silicones are typically larger than droplets in
Sylgard silicones. The inset shows a typical image of droplets
formed in Sylgard silicone with E = 450kPa.



Experimental Results

» Samples made from only one of these silicone
families, elastic ripening and Ostwald ripening
proceed in the same direction.

» In A, smaller fluorinated oil droplets on the stiff
side shrink while feeding the growth of larger
droplets on the soft side.

» In B, larger droplets near the interface on the stiff
side shrink while small droplets on the soft side
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A Complication
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FIG. 4: Sylgard and Gelest silicones have different satura-
tions. A plot of ¢, as a function of temperature shows how
fluorinated oil is more soluble in Gelest than in Sylgard sili-
cones. The solubility is effectively independent of stiffness for
the two different types of silicone.



Diffusion Process

Fick’s Law

J=-DVo
l Gels with a heterogeneous saturation.
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Theoretical Result
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Compressive stress.
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Simulation
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FIG. 5: Numerical simulations of the experimental setups pre-
sented in Figure 3. Top: Droplet radius. Middle: Concentra-
tion in the dilute phase, ¢. Bottom: chemical potential, p.

A) For 80kPa Sylgard next to 10kPa Gelest, elastic ripening
moves against concentration gradients. B) For 140kPa next
to 100kPa Sylgard, elastic ripening goes against classical Ost-
wald ripening.
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Conclusion







