

Study of interaction between polyaniline and β -cyclodextrin

Kairon Márcio de Oliveira

Polyaniline

 Polyaniline (Pani) is a conductor polymer that can be obtained the reaction polymerization the monomers aniline.

Pani

Aniline

Polyaniline

We can obtained different kinds of Polyaniline using reduction and oxidation.

Polyaniline

We can obtained different kinds of Polyaniline using reduction and oxidation.

Cyclodextrin

- Cyclodextrins are molecules that has truncated cone shape.
- Inside has a hydrophobic part and outside is hydrophilic.
- Cyclodextrins (CDs) are cyclic molecules which consist of six to eight glucose units: α -, β -, and γ -cyclodextrins with six, seven, and eight glucose units, respectively.

Cyclodextrin

 Their cylindrical structures with cavities of about 0.7 nm deep and 0.5-0.8 nm inside diameter yield various unique properties.

 Because it is an amphiphilic molecule, cyclodextrins can make inclusion compound with other molecules.

Inclusion compound

 The inclusion compound formation between CDs and a polymer chain is entropically unfavorable and encouraged at low temperature by noncovalent interaction such as hydrophobic one.

$$\Delta G = \Delta H - T.\Delta S$$

Objectives

 This articles have how the objectives study if have the formation inclusion compound between polyaniline and β-cyclodextrin and observe the effects when do oxidation in this polymer.

Inclusion Complex Formation of Cyclodextrin and Polyaniline

Ken-ichi Yoshida, Takeshi Shimomura, Kohzo Ito,* and Reinosuke Hayakawa

Department of Applied Physics, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received September 14, 1998. In Final Form: December 7, 1998

• One solution with β -cyclodextrin (β CD) diluted in N-methly-2-pyrrolidone.

- Other solution make a polymerization the Pani in emeraldine base (without free charges).
- This solutions is mixture, 1:24, and cooled.

- Observed the blue precipitation, that can show have formation the compound inclusion.
- This not happen without N-methly-2-pyrrolidone.

Frequency-domain electric birefringence (FEB)

$$E = \operatorname{Re}[E_0 \exp(i\omega t)]$$

$$\check{K} \equiv \Delta n / E_0^2 = K_{\text{dc}} + \operatorname{Re}[K_{2\omega}^* \exp(i2\omega t)]$$

$$\check{K}_{2\omega}^* (=K_{2\omega}' - iK_{2\omega}'')$$

Frequency-domain electric birefringence (FEB)

$$E = \operatorname{Re}[E_0 \exp(i\omega t)]$$

$$\check{K} \equiv \Delta n / E_0^2 = K_{dc} + \operatorname{Re}[K_{2\omega}^* \exp(i2\omega t)]$$

$$\check{K}_{2\omega}^* (= K_{2\omega}' - iK_{2\omega}'')$$

Figure 2. Typical experimental results of the FEB spectra in the mixture solution of β -CD and PAn in NMP (a) at 255 K and (b) at 300K.

From the rotational relaxation frequency (fr = $3/(4\pi\tau_r)$), at which $K_{2\omega}$ " has a maximum

$$f_{\rm r} = \frac{9k_{\rm B}T}{2\pi^2 \,\eta_0 \,L_{\rm eff}^{3}} (\ln(L_{\rm eff}/d_{\rm r}) + \gamma_{\rm r})$$

Figure 3. The temperature dependence of the effective length $L_{\rm eff}$ calculated from the rotational relaxation time $\tau_{\rm r}$ with eq 1. At temperature above 275 K, the FEB signal was not detected.

Scanning Tunneling microscopy (STM)

• Some complexes were caught by roughness on the surface due to exfoliation of graphite layers as shown in Figure 4a.

Figure 4. STM images where fields of view are (a) 1200 nm \times 1200 nm and (b) 350 nm \times 350 nm. (c) The height profile of the cross section.

Insulation Effect of an Inclusion Complex Formed by Polyaniline and β -cyclodextrin in Solution

Takeshi Shimomura¹*, Ken-ichi Yoshida¹, Kohzo Ito¹ and Reinosuke Hayakawa²
¹Graduate School of Frontier Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
²Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

FIGURE 2. PAn in solution is oxidized by iodine but the insulated molecular wire is not oxidized without the dissociation process.

- The solution of Pani-βCD at 255 K for a day, then added the diluted iodine solution and heated them to 273 K. As a result, the Pani solution changed color from blue to violet in a couple of days while the mixture solution still remained blue.
- Pani in the inclusion complex is almost completely covered by βCD molecules and insulated from the chemical oxidation by iodine.
- The author make this solution in 300K added the diluted iodine solution and after cooled them to 273K. The solution change the color.

FIGURE 2. PAn in solution is oxidized by iodine but the insulated molecular wire is not oxidized without the dissociation process.

Technique used

 Measured the optical absorption spectra of the sample solution with a spectrophotometer (Hitachi U-110).

The difference between the incident and transmitted light indicates the absorbance

 It is seen a gradual blue shift of the spectra the mixture solution for 4 or 5 hr after the temperature increase and then shows the spectral shift. This indicates that the inclusion complex is maintained for a while even at 288 K.

FIGURE 3. The time dependence of the optical absorption spectra of (a) the PAn solution and (b) the mixture solution of PAn and β -CD every hour after the temperature increase from 255 to 288 K. The spectral shift reflects the chemical oxidation of PAn by iodine. In (b), the spectra have little change for 4 or 5 hr after the temperature increase.

POLYMERS FOR ADVANCED TECHNOLOGIES

Polym. Adv. Technol. 14, 428-432 (2003)

Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/pat.352

Preparation of Inclusion Complex Between Polyaniline and β -Cyclodextrin in Aqueous Solution

Guo-Li Yuan¹, Noriyuki Kuramoto¹* and Makoto Takeishi²

 ¹Graduate Program of Human Sensing and Functional Sensor Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
 ²Department of Polymer Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

- In this article the author make two different production the compound inclusion: Polymerization in situ and mixture Pani (emeraldine base) in solution with βCD.
- In polymerization he used N-phenyl-1,4-phenylenediamine (PPD) and dilute this in ethanol solution and added βCD.
- Using acetone to remove unencapsulated PPD and produced the powder.

25

EmeraldineSalt

$$\begin{bmatrix} A^- \\ \bullet + \\ N \\ H \end{bmatrix} \begin{bmatrix} A^- \\ \bullet + \\ N \\ H \end{bmatrix} \begin{bmatrix} A^- \\ \bullet + \\ N \\ H \end{bmatrix} \begin{bmatrix} A^- \\ \bullet + \\ N \\ H \end{bmatrix}$$

- For the mixture, the author added Pani (EB —> blue) in a solvent dimethylsulfoxide (DMSO) and after was slowly added to βCD aqueous solution.
- After dispersed gave a blue suspension.

Is more polar than water

UV-vis spectroscopy

FIGURE 4. The CD and corresponding UV-vis spectra of as-synthesized PANI- β CyD in aqueous solution by *in situ* polymerization of PPD- β CyD.

Nuclear Magnetic Resonance Spectroscopy (H-NMR)

FIGURE 5. ¹H-NMR spectrum of PANI- β CyD (in DMSO- d_6) prepared by *in situ* polymerization.

FIGURE 6. The UV-vis spectra of PANI- β CyD in various solvents.

FIGURE 7. The CD spectra of PANI- β CyD re-dissolved in some solvents corresponding to that in Fig. 6.

FIGURE 8. The spectra change in the formation of EB- β CyD complex: (A) UV-vis spectra (a) 30 mins, (b) 1 hr, (c) 19 hr, (d) redispersed in water after precipitated; (B) CD spectra at 1 and 19 hr.

FIGURE 9. FT-IR spectra of β CyD and EB- β CyD inclusion complex.

Conclusions

- Polyaniline and β-cyclodextrin inclusion compound can be make in polymerization polymer with cyclodextrin or mixture the two, but in this case is necessary using a solvent.
- The βCD protect the encapsulated Pani the oxidation for ionide solution.
- The characteristic for Pani is not altered when is encapsulated.
- The Pani change the shape.

Thank you